

Future Concept (NIAC)

- Required technologies
 - Miniaturized components (MEMS)
 - Low mass platforms
 - Self consuming systems
 - Self designing systems
 - Coordinated autonomy of complex systems with many platforms
 - Autonomy with humans "in the loop"

Nov 6-7, 2001

Page 3

High-level

Mission data

Low Mass Platforms

- 15kg, fully functional, student built satellite
 - Electric propulsion, comm, GPS, x-link, 4 cameras
 - NIAC study: factor of 4 mass improvement with MEMS

Autonomous Systems with Humans

- If human is on Earth, the complex system must
 - Be able to explore uncertain environment
 - Overcome latency
- If human is with the system, the complex system must be designed to
 - Remove human from low level tasks (i.e. simply directing science
 - Be simple to use
- In both cases, humans must "interface" with complex autonomous system

Nov 6-7, 2001

MICA Hierarchy

- Develop theory, algorithms, software, and modeling/simulation capabilities for hierarchical battlespace management and distributed control of semiautonomous entities
- Important technologies
 - Humans factors
 - Coordinated control
 - Sensor fusion/estimation

Nov 6-7, 2001

Human/System Interface Design (physical/information)

- Efficient human interactions
 - Efficient "distilled commands"
 - Use past information
 - human "intuitive" commands
 - Task-centric commands ("natural")
- Example: Playbook
 - operator acts as a "quarterback"

Nov 6-7, 2001

Automation Level			
Degrees of Automation	Mixed Initiative Control Example		
Human does it all	Decides next targets		
Computer offers alternatives	Strategic list of targets, teams		
Narrows alternatives to a few	List of targets, teams and probability of success		
Suggests an alternative	Target, teams		
Computer executes if human approves	Weapons deployment	F 1.6 ::	
Computer executes, human can veto	Weapons deployment	For each fu where is the	
Computer executes, informs human	Vehicle maneuver	functional limit?	
Informs human only if asked	Vehicle sensing/tracking	1	
Informs human only if it decides to	Minor internal faults		
Computer acts autonomously	Rudder command		

Mixed Initiative Control: *N* on *M* Task Space Control

- Idea: decompose task to allow human centered control with M = N
- Example: position/shape decomposition
 - Control shape separately from formation location
 - Present different views that enable task coordination

ÇOŖŅĘĻĻ

Nov 6-7, 2001

Page 13

200 Example: track location with noisy

sensors through info outages

Sensor Fusion

• Examples

- -Location, health
- Information/learning about environment
- Latency in communication 0 20900 200 100 = 0 Gain Back Contact. Predictor Only 0 20900 200 100 = 0 100 200 300
- Uncertainties (constraints) to Planning
- Confidence factors to human operators
- Team information, health, weather

CORNELL

Nov 6-7, 2001

Testbed: Capture the Flag using Robots

Important conclusion: fully autonomous systems perform soccer better *without* humans in the loop

Nov 6-7, 2001

Page 15

Conclusions

- Future technology (MEMS, autonomy) will enable complex, multi-vehicle systems for exploration
- Humans must interface with autonomous systems whether they are on Earth or not
- Hierarchical autonomy is an excellent approach to integrating humans in the loop
- Other programs (such as DARPA MICA) should be leveraged

Nov 6-7, 2001